Abstract
By calculating the second-order pole in the operator product expansion (OPE) between the spin-3 Casimir operator and the spin-4 Casimir operator known previously, the spin-5 Casimir operator is obtained in the coset model based on (A_{N-1}^{(1)} \oplus A_{N-1}^{(1)}, A_{N-1}^{(1)}) at level (k,1). This spin-5 Casimir operator consisted of the quintic, quartic (with one derivative) and cubic (with two derivatives) WZW currents contracted with SU(N) invariant tensors. The three-point functions with two scalars for all values of 't Hooft coupling in the large N limit were obtained by analyzing the zero-mode eigenvalue equations carefully. These three-point functions were dual to those in AdS_3 higher spin gravity theory with matter. Furthermore, the exact three-point functions that hold for any finite N and k are obtained. The zero mode eigenvalue equations for the spin-5 current in CFT coincided with those of the spin-5 field in asymptotic symmetry algebra of the higher spin theory on the AdS_3. This paper also describes the structure constant appearing in the spin-4 Casimir operator from the OPE between the spin-3 Casimir operator and itself for N=4, 5 in the more general coset minimal model with two arbitrary levels (k_1, k_2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.