Abstract

Using the infinite Projected Entangled Pair States (iPEPS) algorithm, we study the ground-state properties of the spin-$1/2$ quantum Heisenberg antiferromagnet on the star lattice in the thermodynamic limit. By analyzing the ground-state energy of the two inequivalent bonds of the lattice in different unit-cell structures, we identify two competing Valence-Bond-Solid (VBS) phases for different antiferromagnetic Heisenberg exchange couplings. More precisely, we observe (i) a VBS state which respects the full symmetries of the Hamiltonian, and (ii) a resonating VBS state which, in contrast to previous predictions, has a six-site unit-cell order and breaks $C_3$ symmetry. We also studied the ground-state phase diagram by measuring the ground-state fidelity and energy derivatives, and further confirmed the continuous nature of the quantum phase transition in the system. Moreover, an analysis of the isotropic point shows that its ground state is also a VBS as in (i), which is as well in contrast with previous predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.