Abstract

Magnetic monopole, a hypothetical elementary particle with isolated magnetic pole, is crucial for the quantization of electric charge. In recent years, analogues of magnetic monopoles, represented by topological defects in parameter spaces, have been studied in a wide range of physical systems. These works mainly focused on Abelian Dirac monopoles in spin-1/2 or non-Abelian Yang monopoles in spin-3/2 systems. Here we propose to realize three types of spin-1 topological monopoles and study their geometric properties using the parameter space formed by three hyperfine states of ultracold atoms coupled by radio-frequency fields. These spin-1 monopoles, characterized by different monopole charges, possess distinct Berry curvature fields and spin textures, which are directly measurable in experiments. The topological phase transitions between different monopoles are accompanied by the emergence of spin "vortex", and can be intuitively visualized using Majorana's stellar representation. We show how to determine the Berry curvature, hence the geometric phase and monopole charge from dynamical effects. Our scheme provides a simple and highly tunable platform for observing and manipulating spin-1 topological monopoles, paving the way for exploring new topological quantum matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.