Abstract

AbstractThe paper presents the results from detailed experiments of the statistical structure of turbulence pressure fluctuations at the bottom of hydraulic jumps, with special reference to the spillway stilling basins lining design. Here, the whole spatial correlation structure of the fluctuating pressure field is required in order to evaluate slab stability. This is computed via simultaneous acquisition of the point pressure fluctuations on a dense grid in the hydraulic jump region, requiring a severe experimental work. As an alternative, one can evaluate the pressure spatial correlation structure via autocorrelation using one point pressure acquisition and applying the Taylor hypothesis. To adopt the Taylor hypothesis, one must know the pressure propagation celerity in space that can be obtained by comparing the whole spatial pressure correlation with the pivot point pressure autocorrelation. The experiments were performed by simultaneous pressure acquisitions at the bottom of a hydraulic jump for Frou...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call