Abstract

Conversion of biomass-derived furfural (FFA) platform molecule to value-added tetrahydrofurfuryl alcohol (THFA) molecule is a sustainable route using an efficient non-noble metallic catalyst in water solvent. In this work, Ni in various loadings on mesoporous titanium dioxide (m-TiO2) was synthesized in one pot by Evaporation-Induced Self-Assembly (EISA). The synthesised catalysts were evaluated for the hydrogenation of furfural to tetrahydrofurfuryl alcohol. The catalysts were characterised using a combination of spectroscopic techniques such as XRD, H2-TPR, H2-TPD, XPS, SEM-EDX, TEM, and HR-TEM. The characterization results show that the Ni/m-TiO2 materials exhibit enhanced electron-rich active sites, facilitated hydrogen spillover, uniform dispersion of small Ni particles (~5 nm), and strong metal support interaction between Ni and TiO2. Among the various Ni dopings, 7.5 wt.% Ni/m-TiO2 catalyst exhibited the best performance and achieved 99.9% FFA conversion and 93.2% THFA selectivity in water solvent at 100 °C and under 2 MPa H2. Additionally, detailed kinetic studies, process parameters, the stability and reusability of the catalyst were also studied. The results demonstrated that the 7.5 wt.% Ni/m-TiO2 catalyst is highly active and stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.