Abstract

The concept of spill-over of adsorbed species has a long tradition in Heterogeneous Catalysis and has been explored also for adsorption on bimetallic surfaces, in particular by the Goodman group. In the present paper, we report results of a comprehensive temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy study on spill-over effects in the adsorption and desorption of CO on structurally well defined bimetallic Pt/Ru(0001) surfaces, where part of the substrate is covered by monolayer Pt islands. While upon adsorption at 90 K, the mobility of COad molecules on the surface is very limited, it is activated when the adlayer is annealed to 150 K or, more directly, if CO exposure is done at 150 K or higher temperatures. This enables diffusion of COad molecules to the Pt free Ru(0001) areas, even at local COad coverages which preclude further adsorption from the gas phase on the Ru parts of the surface. Spill-over processes are shown to have significant impact on the TPD spectra; furthermore they provide an additional adsorption channel for adsorption on the bare Ru(0001) areas, allowing uptake of CO at local coverages where adsorption from the gas phase is precluded. This indicates that the apparent CO saturation coverage of 0.68 ML determined for direct adsorption on Ru(0001) under UHV conditions is limited by kinetics rather than thermodynamics. The data are discussed in comparison with results and interpretations in earlier studies, which indicate that these effects are not limited to the Pt/Ru(0001) surface, but may be found on a wide range of bimetallic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call