Abstract

In this paper, we study spiking synchronization in three different types of Hodgkin—Huxley neuronal networks, which are the small-world, regular, and random neuronal networks. All the neurons are subjected to subthreshold stimulus and external noise. It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization. We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization. Only when the magnitude of the synaptic conductance is moderate, will the effect be considerable. However, if the synaptic conductance is small or large, the effect vanishes. As the connections between neurons increase, the synaptic conductance to maximize the effect decreases. Therefore, we show quantitatively that the noise-induced maximal synchronization in the Hodgkin—Huxley neuronal network is a general effect, regardless of the specific type of neuronal network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call