Abstract

Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.

Highlights

  • Visual motion detection (MD), direction selectivity (DS) and orientation selectivity (OS) are essential basic mechanisms for processing visual input from the environment (Borst and Euler, 2011; Clark and Demb, 2016; Nath and Schwartz, 2016)

  • The contribution of this paper is to introduce a bio-inspired model of motion detector integrating direction and orientation selectivity features, implementing these processes at a behavioral robotic level

  • Following the recent evidence in vision neuroscience, this work focused on the effect of merging visual orientation and direction processes in a MD computational robotic model

Read more

Summary

Introduction

Visual motion detection (MD), direction selectivity (DS) and orientation selectivity (OS) are essential basic mechanisms for processing visual input from the environment (Borst and Euler, 2011; Clark and Demb, 2016; Nath and Schwartz, 2016). The study of elementary MD and DS models under the umbrella of computational vision is based on a few theories (Hassenstein and Reichardt, 1956; Hubel and Wiesel, 1959; Barlow and Levick, 1965). Several studies have used the well-known Drosophila model in vision science (Paulk et al, 2013), validating underlying mechanisms of DS (Eichner et al, 2011; Gilbert, 2013; Maisak et al, 2013; Shinomiya et al, 2014; Leong et al, 2016; Haag et al, 2017). When the axis of motion is orthogonal to the orientation of the moving stimulus, directional tuning is sharpened. As the orientation of the moving stimulus aligns in parallel to the direction of the axis of motion, neuronal responses are reduced

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call