Abstract

We investigate synchronization phenomena in a system of two piecewise-linear-type model neurons with excitatory or inhibitory synaptic couplings. Employing the phase plane analysis and a singular perturbation approach to split the dynamics into slow and fast ones, we construct analytically the Poincaré map of the solution to the piecewise-linear equations. We investigate conditions for the occurrence of synchronized oscillations of in phase as well as of antiphase in terms of parameters representing the strength of the synaptic coupling and the decaying relaxation rate of the synaptic dynamics. We present the results of numerical simulations that agree with our theoretical ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.