Abstract
Supervised learning in Spiking Neural Network (SNN) is a hotbed for researchers due to the advantages temporal coded networks provide over that of rate-coded networks with respect to efficiency in information processing and transfer rates. Supervised learning in rate-coded networks though well established, it is difficult to directly apply such models to SNN due to difference in information coding schemes. In this paper, we seek to exploit the advantages of spiking neural networks for spike sequence learning in order to establish two (2) models; batch and sequential learning models for solving data classification tasks. The models are built using the least squares approach leveraging on its approximation abilities. The first set of experiments are on spikesequence learning in which an extensive evaluation of the model is performed using different inputoutput firing rates and learning periods. Results from these experiments show that the proposed model for spike sequence learning produced better performance than some existing models derived for spike sequence learning, particularly, at higher learning periods. The proposed models for data classification are also tested on some selected benchmark datasets most of which had imbalance class distributions and also on real-world road condition datasets for anomaly classification collected by the authors as part of a larger study. While the proposed models generalised very well to all datasets including those with the class imbalance problem where F1and Recall values above 0.90 were recorded, some well-know machine learning algorithms applied to the datasets yielded lower F1 and Recall values and in some cases recorded 0.0 Recall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.