Abstract

In this research article, a spiking neural network-based simulation of the hippocampus is performed to model the functionalities of episodic memory. The purpose of the simulation is to find a computational model through the biological architecture of the hippocampus and correct values for their architectural biological parameters to support the episodic memory functionalities. The episodic store of the model is represented by the collection of events, where each event is further subdivided into coactive activities of experience. The model has tried to mimic the three functionalities of episodic memory, which are pattern separation, pattern association, and their recallings. In pattern separation model used the dentate biological connectivity to generate almost different output patterns corresponding to similar input patterns to reduce interference between two similar memory traces so that ambiguity can be reduced during recalling. In pattern association, an STDP based event encoding and forgetting mechanism are used to mimic the encoding function of the CA3 region in which the coactive activities get associated with each other. A decoder is proposed based on CA1, which can answer the stored event related queries. Along with these functionalities model also supports recalling and encoding based forgetting. Experimental work is performed on the model for the given set of events to check for the pattern separation efficiency, pattern completion efficiency and to check the capability of decoding the answer. An empirical analysis of the results is done and compared with the SMRITI model of episodic memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call