Abstract
Neuromorphic data carries information in spatio-temporal patterns encoded by spikes. Accordingly, a central problem in neuromorphic computing is training spiking neural networks (SNNs) to reproduce spatio-temporal spiking patterns in response to given spiking stimuli. Most existing approaches model the input-output behavior of an SNN in a deterministic fashion by assigning each input to a specific desired output spiking sequence. In contrast, in order to fully leverage the time-encoding capacity of spikes, this work proposes to train SNNs so as to match <i>distributions</i> of spiking signals rather than individual spiking signals. To this end, the paper introduces a novel hybrid architecture comprising a conditional generator, implemented via an SNN, and a discriminator, implemented by a conventional artificial neural network (ANN). The role of the ANN is to provide feedback during training to the SNN within an adversarial iterative learning strategy that follows the principle of generative adversarial network (GANs). In order to better capture multi-modal spatio-temporal distribution, the proposed approach – termed SpikeGAN – is further extended to support Bayesian learning of the generator's weight. Finally, settings with time-varying statistics are addressed by proposing an online meta-learning variant of SpikeGAN. Experiments bring insights into the merits of the proposed approach as compared to existing solutions based on (static) belief networks and maximum likelihood (or empirical risk minimization). In our experiments, handwritten digit images generated by SpikeGAN are observed to train an ANN classifier with <inline-formula><tex-math notation="LaTeX">$20\%$</tex-math></inline-formula> higher accuracy than a comparable belief network. Our experiments also demonstrate the use of SpikeGAN to generate neuromorphic data sets from handwritten digits. It is shown that these data can be used to train an SNN classifier that achieves an accuracy level approaching the baseline accuracy of an SNN classifier trained on rate-encoded real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.