Abstract

Reliable accounts of the variability observed in neural spike trains are a prerequisite for the proper interpretation of neural dynamics and coding principles. Models that accurately describe neural variability over a wide range of stimulation and response patterns are therefore highly desirable, especially if they can explain this variability in terms of basic neural observables and parameters such as firing rate and refractory period. In this work, we analyze the response variability recorded in vivo from locust auditory receptor neurons under acoustic stimulation. In agreement with results from other systems, our data suggest that neural refractoriness has a strong influence on spike-train variability. We therefore explore a stochastic model of spike generation that includes refractoriness through a recovery function. Because our experimental data are consistent with a renewal process, the recovery function can be derived from a single interspike-interval histogram obtained under constant stimulation. The resulting description yields quantitatively accurate predictions of the response variability over the whole range of firing rates for constant-intensity as well as amplitude-modulated sound stimuli. Model parameters obtained from constant stimulation can be used to predict the variability in response to dynamic stimuli. These results demonstrate that key ingredients of the stochastic response dynamics of a sensory neuron are faithfully captured by a simple stochastic model framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.