Abstract

SummaryBackgroundThe conversion of an analog stimulus into the digital form of spikes is a fundamental step in encoding sensory information. Here, we investigate this transformation in the visual system of fish by in vivo calcium imaging and electrophysiology of retinal bipolar cells, which have been assumed to be purely graded neurons.ResultsSynapses of all major classes of retinal bipolar cell encode visual information by using a combination of spikes and graded signals. Spikes are triggered within the synaptic terminal and, although sparse, phase-lock to a stimulus with a jitter as low as 2–3 ms. Spikes in bipolar cells encode a visual stimulus less reliably than spikes in ganglion cells but with similar temporal precision. The spike-generating mechanism does not alter the temporal filtering of a stimulus compared with the generator potential. The amplitude of the graded component of the presynaptic calcium signal can vary in time, and small fluctuations in resting membrane potential alter spike frequency and even switch spiking on and off.ConclusionsIn the retina of fish, the millisecond precision of spike coding begins in the synaptic terminal of bipolar cells. This neural compartment regulates the frequency of digital signals transmitted to the inner retina as well as the strength of graded signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.