Abstract
Numerous recent research efforts have leveraged networks of rigid struts and flexible cables, called tensegrity structures, to create highly resilient and packable mobile robots. However, the locomotion of existing tensegrity robots is limited in terms of both speed and number of distinct locomotion modes, restricting the environments that a robot is capable of exploring. In this study, we present a tensegrity robot inspired by the volumetric expansion of Tetraodontidae. The robot, referred to herein as Spikebot, employs pneumatically actuated rigid struts to expand its global structure and produce diverse gaits. Spikebot is composed of linear actuators that dually serve as rigid struts linked by elastic cables for stability. The linearly actuating struts can selectively protrude to initiate thrust- and instability-driven locomotion primitives. Such motion primitives allow Spikebot to reliably locomote, achieving rolling, lifting, and jumping. To highlight Spikebot's potential for robotic exploration, we demonstrate how it achieves multi-dimensional locomotion over varied terrestrial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.