Abstract
In the CA3 region of the hippocampus, extensive recurrent associational/commissural (A/C) connections made by pyramidal cells may function as a network for associative memory storage and recall. We here report that long-term potentiation (LTP) at the A/C synapses can be induced by association of brief spike trains in mossy fibers (MFs) from the dentate gyrus and A/C fibers. This LTP not only required substantial overlap between spike trains in MFs and A/C fibers, but also depended on the temporal order of these spike trains in a manner not predicted by the well-known rule of spike timing-dependent plasticity and requiring activation of type 1 metabotropic glutamate receptors. Importantly, spike trains in a putative single MF input provided effective postsynaptic activity for the induction of LTP at A/C synapses. Thus, the timing of spike trains in individual MFs may code information that is crucial for the associative modification of CA3 recurrent synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.