Abstract

Analogue and mixed-signal VLSI implementations of Spike-Timing-Dependent Plasticity (STDP) are reviewed. A circuit is presented with a compact implementation of STDP suitable for parallel integration in large synaptic arrays. In contrast to previously published circuits, it uses the limitations of the silicon substrate to achieve various forms and degrees of weight dependence of STDP. It also uses reverse-biased transistors to reduce leakage from a capacitance representing weight. Chip results are presented showing: various ways in which the learning rule may be shaped; how synaptic weights may retain some indication of their learned values over periods of minutes; and how distributions of weights for synapses convergent on single neurons may shift between more or less extreme bimodality according to the strength of correlational cues in their inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.