Abstract

The human brain’s unparalleled efficiency in executing complex cognitive tasks stems from neurons communicating via short, intermittent bursts or spikes. This has inspired Spiking Neural Networks (SNNs), now incorporating neuron models with spike frequency adaptation (SFA). SFA adjusts these spikes’ frequency based on recent neuronal activity, much like an athlete’s varying sprint speed. SNNs with SFA demonstrate improved computational performance and energy efficiency. This review examines various adaptive neuron models in computational neuroscience, highlighting their relevance in artificial intelligence and hardware integration. It also discusses the challenges and potential of these models in driving the development of energy-efficient neuromorphic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.