Abstract

Abstract The development of effective vaccines and therapies against viral diseases requires reliable approaches for assessing durable immunological memory. Although a wealth of information is available from peripheral blood mononuclear cell samples, Conventional methods for quantifying and phenotyping antigen-specific lymphocytes can rapidly deplete irreplaceable specimens. This is due to the fact that antigen-specific T and B cells have historically been analyzed in independent assays each requiring millions of cells. A technique that facilitates the simultaneous detection of antigen-specific T and B cells would allow for more thorough immune profiling with significantly reduced sample requirements. To this end, we developed the B And T cell Tandem Lymphocyte Evaluation (BATTLE) assay, which allows for the simultaneous identification of SARS-CoV-2 Spike reactive T and B cells using an optimized Activation Induced Marker (AIM) T cell assay and a dual-color B cell antigen probes. Using this assay, we demonstrate that antigen-specific B and T cell subsets can be identified simultaneously using conventional flow cytometry platforms and provide insight into the differential effects of mRNA vaccination on B and T cell populations following natural SARS-CoV-2 infection. While spike-specific B cell and CD8+ T cell responses were higher following mRNA vaccination than natural infection alone, the quantity of CD4+ T cells recognizing spike was enhanced only in subjects with low responses to natural infection. Our findings suggest divergent patterns of B and T cell subset mobilization with repeated antigen encounter and highlight the utility of examining these populations in concert. Supported by the State of New York.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.