Abstract

We performed an extensive numerical study of pattern formation scenarios in the two-dimensional Gray-Scott reaction-diffusion model. We concentrated on the parameter region in which there exists a strong separation of length and/or time scales. We found that the static one-dimensional autosolitons (stripes) break up into two-dimensional radially-symmetric autosolitons (spots). The traveling one-dimensional autosolitons (wave fronts) can be stable or undergo breakup. The static two-dimensional radially-symmetric autosolitons may break up and self-replicate leading to the formation of space-filling patterns of spots, wave fronts, or spatio-temporal chaos due to the competition of self-replication and annihilation of spots upon collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.