Abstract

Coated microneedles (CMNs) are a minimally invasive platform for immediate-release transdermal drug delivery. However, the practical applications of CMNs have been significantly hindered by the challenges associated with complex formulations, single function, and limited drug loading capacity. This study has developed a spiderweb-shaped iron-coordinated polymeric nanowire network (Fe-IDA NWs). The resulting Fe-IDA NWs are endowed with a certain viscosity due to the synergy of multiple supramolecular interactions. This allows them to replace traditional polymeric thickeners as microneedle coatings. The Fe-IDA NWs-coated microneedles (Fe-IDA MNs) display rapid disintegration in the skin model, which also enables the swift diffusion of Fe-IDA NWs and their payloads into the deeper skin layers. Additionally, Fe-IDA MNs exhibit desirable enzymatic activity and potential antibacterial ability. Thus, Fe-IDA MNs can enhance the therapeutic efficacy against wound infection through synergistic effects, and avoid the overly complicated formulation and the release of nontherapeutic molecules of conventional CMNs. As a proof-of-concept, Fe-IDA MNs loaded with chlorin e6 showed a synergistic chemodynamic-photodynamic antibacterial effect in a methicillin-resistant Staphylococcus aureus-infected wound model in mice. Collectively, this work has significant implications for the future of CMNs-based transdermal drug delivery systems and expands the application fields of metal coordination polymer (MCP) materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.