Abstract

BackgroundMaternally inherited bacteria that reside obligatorily or facultatively in arthropods can increase their prevalence in the population by altering their hosts' reproduction. Such reproductive manipulations have been reported from the major arthropod groups such as insects (in particular hymenopterans, butterflies, dipterans and beetles), crustaceans (isopods) and mites. Despite the observation that endosymbiont bacteria are frequently encountered in spiders and that the sex ratio of particular spider species is strongly female biased, a direct relationship between bacterial infection and sex ratio variation has not yet been demonstrated for this arthropod order.ResultsFemales of the dwarf spider Oedothorax gibbosus exhibit considerable variation in the sex ratio of their clutches and were infected with at least three different endosymbiont bacteria capable of altering host reproduction i.e. Wolbachia, Rickettsia and Cardinium. Breeding experiments show that sex ratio variation in this species is primarily maternally inherited and that removal of the bacteria by antibiotics restores an unbiased sex ratio. Moreover, clutches of females infected with Wolbachia were significantly female biased while uninfected females showed an even sex ratio. As female biased clutches were of significantly smaller size compared to non-distorted clutches, killing of male embryos appears to be the most likely manipulative effect.ConclusionsThis represents to our knowledge the first direct evidence that endosymbiont bacteria, and in particular Wolbachia, might induce sex ratio variation in spiders. These findings are pivotal to further understand the diversity of reproductive phenotypes observed in this arthropod order.

Highlights

  • Inherited bacteria that reside obligatorily or facultatively in arthropods can increase their prevalence in the population by altering their hosts’ reproduction

  • As many other factors beside endosymbionts might cause sex ratio distortion [1], multiple lines of evidence such as maternal inheritance of sex ratio variation, use of different antibiotics that target an array of different bacterial families and a direct relationship between endosymbiont presence and sex ratio effect are necessary to disentangle the impact of each endosymbiont on the produced sex ratio [5,22]

  • We explore the potential role of endosymbionts in inducing this sex ratio variation by (i) unraveling the inheritance pattern of the sex ratio trait, (ii) relating the presence of several endosymbiont bacteria with sex ratio variation and (iii) investigating whether an equal sex ratio can be restored by antibiotic treatments

Read more

Summary

Introduction

Inherited bacteria that reside obligatorily or facultatively in arthropods can increase their prevalence in the population by altering their hosts’ reproduction. Such reproductive manipulations have been reported from the major arthropod groups such as insects (in particular hymenopterans, butterflies, dipterans and beetles), crustaceans (isopods) and mites. We report on sex ratio variation in the solitary spider Oedothorax gibbosus (Araneae: Linyphiidae: Erigoninae) This small dwarf spider has a palearctic distribution and occurs exclusively in damp habitats such as marshes and wet forests, where they reside in grass tussocks and patches of moss situated close to the water. We explore the potential role of endosymbionts in inducing this sex ratio variation by (i) unraveling the inheritance pattern of the sex ratio trait, (ii) relating the presence of several endosymbiont bacteria with sex ratio variation and (iii) investigating whether an equal sex ratio can be restored by antibiotic treatments

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call