Abstract

The development of biomaterials for the interface between tendon and bone is important for realizing functional tendon replacements. Toward the development of new materials for such applications, engineered recombinant spider silk proteins were modified with peptide tag sequences derived from noncollagenous proteins in bone, so-called SIBLING proteins, such as osteopontin and sialoprotein, which are known to interact with collagen and to initiate mineralization. Materials made of these spider silk-SIBLING hybrids were analyzed concerning mineralization and interaction with cells. They showed enhanced calcium phosphate formation upon incubation in mineralization agents. In gradient films, MC3T3-E1 mouse preosteoblasts adhered preferentially along the gradient toward the variant with a collagen binding motif.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.