Abstract

Abstract Silks are well known natural fibers used for textile applications and have got for the first time available upon sericulture of silkworms (Bombyx mori) several thousand years ago in China. In contrast to silkworm silk, spider silks offer better mechanical properties such as higher tensile strength and much better toughness, but natural spider silk is less accessible due to the cannibalistic behavior of spiders prohibiting large scale farming, and therefore has not been employed in textile industry yet. In this study, a biotechnologically produced spider silk protein was introduced as a new material for textile applications in form of foam coating material. The spider silk foam coating was developed to increase the abrasion behavior of natural and polymeric furniture textiles. Modern textiles are high-tech materials and optimized concerning yarn design and fabric weave to fit a wide range of applications. Often hydrofluorocarbons based coatings are used to enhance textile performances. Upon coating with sustainable spider silk, yarn fraying was significantly reduced lowering the tendency to form knots and loops. Further, the textile abrasion resistance, analyzed by pilling tests, was improved significantly (17–200%) for all tested types of fabrics, in particular long term strain pilling was minimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call