Abstract

BackgroundConstitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, we found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro. To further elucidate the precise mechanism of the potential tumoricidal activity of Spica Prunellae, using a CRC mouse xenograft model, in this study we evaluated its therapeutic efficacy against CRC and investigated the underlying molecular mechanisms.MethodsCRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.ResultsEESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreased HT-29 cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.ConclusionsSpica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Highlights

  • Constitutive activation of signal transducer and activator of transcription 3 (STAT3) is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and becomes a promising therapeutic target

  • The inhibitory effect of ethanol extract of Spica Prunellae (EESP) on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and Cyclin dependent kinase 4 (CDK4), as well as down-regulation of pro-angiogenic Vascular endothelial growth factor A (VEGF-A) and VEGFR-2 expression

  • EESP inhibits the growth of colorectal cancer (CRC) in vivo and in vitro The anti-tumor activity of EESP in vivo was determined through examination of the tumor weight and volume in CRC xenograft mice; and its adverse effects were evaluated by measuring the body weight changes

Read more

Summary

Introduction

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and becomes a promising therapeutic target. We found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Constitutive activation of STAT3 has been found in numerous types of human cancer including CRC and commonly suggests poor prognosis [13,14,15,16,17,18,19,20,21,22,23].suppression of STAT3 pathway has been a major therapeutic target for treatment of cancer

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call