Abstract

Anoikis (detachment-induced cell death) is a specific type of programmed cell death which occurs in response to the loss of the correct extracellular matrix connections. Anoikis resistance is an important mechanism in cancer invasiveness and metastatic behavior. Autophagy, on the other hand, involves the degradation of damaged organelles and the recycling of misfolded proteins and intracellular components. However, the intersection of these two cellular responses in lung cancer cells has not been extensively studied. Here, we identified that upon matrix deprivation, the lymphocyte lineage-specific Ets transcription factor SPIB was activated and directly enhanced SNAP47 transcription in certain lung cancer cells. Loss of attachment-induced autophagy significantly increased anoikis resistance by SPIB activation. Consistent with this function, SPIB depletion by short hairpin RNA abrogated SNAP47 transcriptional activation upon matrix deprivation. Therefore, these data delineate an important role of SPIB in autophagy-mediated anoikis resistance in lung cancer cells. Accordingly, these findings suggest that manipulating SPIB-regulated pathways invivo and evaluating the impact of anoikis resistance warrant further investigation. DATABASE: RNA sequencing and ChIP sequencing data are available in Gene Expression Omnibus database under the accession numbers GSE106592 and GSE125561, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.