Abstract

Synamphibolite facies Archean gold mineralization in the Mt. York District, Pilbara Craton, Western Australia, is hosted in metamorphosed banded iron formation (Main Hill–Breccia Hill prospect), amphibolites, and ultramafic schists (Zakanaka prospect). Mineralization at Main Hill occurs in quartz breccias with sulfide matrices and in altered wall rock adjacent to quartz–biotite–amphibole ± clinopyroxene veins. Alteration associated with quartz veins is zoned, with biotite—pyrrhotite vein selvedges and a distal calcic-amphibole, arsenopyrite–lôllingite zone. Hydrothermal biotite and actinolite have highest Mg/(Mg + Fe) ratios where associated with abundant sulfarsenides in the distal alteratin zone. Whole-rock geochemical analyses and calculated metasomatic reactions indicate the addition of K, Al, S, As, Au, Ag, and Ni during hydrothermal alteration. Mineralization at Zakanaka is characterized by a broad wall rock alteration halo of biotite–amphibole, and zoned quartz–calc silicate veins proximal to ore. Wall rock adjacent to the veins contains pyrrhotite, pyrite, and gold. The alteration is explained by K-metasomatism distal to mineralization and K and Ca metasomatism proximal to mineralization. Balanced metasomatic reactions and mass-balance calculations indicate addition of K and depletion of Na, Ca, Mg, and Fe in distal alteration zones and addition of K, Ca, Mg, Fe, and Ti in proximal zones. Gold precipitation at both prospects occurred through loss of S, and possibly As, from the ore fluid during sulfidation reactions with Fe-rich amphiboles and biotites to form Mg-enriched equivalents and sulfarsenides. Changes in the oxidation state of the ore fluid may have enhanced gold precipitation, though pH changes are unlikely to have been important. The controls on mineralization are thus similar to those at many lower temperature, mesothermal deposits. The lack of consistently increasing Mg ratios of calc-silicate phases with increasing intensity of alteration and sulfidation at Main Hill may be the result of coupled substitutions in amphiboles and biotites during infiltration of a fluid with high-S, but low-As, activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call