Abstract

Microglial hyperactivation mediated by sphingosine kinase 1/sphingosine-1-phosphate (SphK1/S1P) signalling and the consequent inflammatory mediator production serve as the key drivers of cerebral ischaemia-reperfusion injury (CIRI). Although SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether SphK1 is similarly capable of regulating damage mediated by CIRI-activated microglia. In the current study, we adopted both in vitro oxygen-glucose deprivation reperfusion (OGDR) models and in vivo rat models of focal CIRI to ascertain this possibility. It was found that CIRI upregulated SphK1 and induced autophagy in microglia, while inhibiting these changes significantly impaired to prevented neuronal apoptosis. Results of mechanistic investigation revealed that SphK1 promoted autophagy via the tumour necrosis factor receptor associated factor 2 (TRAF2) pathway. Altogether, our findings unfolded to reveal a novel mechanism, whereby SphK1-induced autophagy in microglia contributed to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in ischaemic stroke patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.