Abstract

Group signatures and their variants have been widely used in privacy-sensitive scenarios such as anonymous authentication and attestation. In this paper, we present a new post-quantum group signature scheme from symmetric primitives. Using only symmetric primitives makes the scheme less prone to unknown attacks than basing the design on newly proposed hard problems whose security is less well-understood. However, symmetric primitives do not have rich algebraic properties, and this makes it extremely challenging to design a group signature scheme on top of them. It is even more challenging if we want a group signature scheme suitable for real-world applications, one that can support large groups and require few trust assumptions. Our scheme is based on MPC-in-the-head non-interactive zero-knowledge proofs, and we specifically design a novel hash-based group credential scheme, which is rooted in the SPHINCS+ signature scheme but with various modifications to make it MPC (multi-party computation) friendly. The security of the scheme has been proved under the fully dynamic group signature model. We provide an implementation of the scheme and demonstrate the feasibility of handling a group size as large as 2 60 . This is the first group signature scheme from symmetric primitives that supports such a large group size and meets all the security requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.