Abstract

Sphingosine kinase 1 (Sphk1), a lipid kinase implicated in cell transformation and tumor growth, is overexpressed in gastric cancer and is linked with a poor prognosis. The biological relevance of Sphk1 expression in gastric cancer is unclear. Here, we studied the functional significance of Sphk1 as a novel molecular target for gastric cancer by using an antisense oligonucleotide approach in vitro and in vivo. Gastric cancer cell lines (MKN28 and N87) were treated with Sphk1 with locked nucleic acid-antisense oligonucleotides (LNA-ASO). Sphk1 target regulation, cell growth, and apoptosis were assessed for single-agent Sphk1 LNA-ASO and for combinations with doxorubicin. Athymic nude mice xenografted with gastric cancer cells were treated with Sphk1 LNA and assessed for tumor growth and Sphk1 target regulation, in vivo. In vitro, nanomolar concentrations of Sphk1 LNA-ASO induced an approximately two-fold reduction in Sphk1 mRNA in both the cell lines. This resulted in a 1.6-fold increase in apoptosis and inhibited the growth of gastric cancer cells by more than 50% (P < 0.05). The combination of Sphk1 LNA-ASO with doxorubicin resulted in significant chemosensitization. In vivo, Sphk1 LNA-ASO displayed neither mRNA target regulation in xenografts nor antitumor activity in two independent nude mouse xenograft models. In conclusion, the potent single-agent activity and the synergistic effect of Sphk1 LNA-ASO in combination with chemotherapy in vitro highlight Sphk1 as a biologically relevant molecular target for gastric cancer. Further studies are warranted to overcome the challenge of delivering Sphk1-targeting RNA-therapeutics to solid tumors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.