Abstract

Follicle-stimulating hormone (FSH) stimulates the proliferation, survival, and estradiol synthesis of granulosa cells by binding to their G protein-coupled receptors. Although FSH activates sphingosine kinase-1 (SPHK1) to induce sphingosine-1-phosphate (S1P) synthesis, which is required to mediate the proliferative and survival effect of this gonadotrophin, the mechanisms, and the role of S1P in estradiol synthesis have not been reported. This study aimed to evaluate the importance of FSH-induced S1P synthesis as a mediator of the effects of this gonadotrophin on granulosa cell viability and steroidogenesis and to determine if FSH-induced S1P synthesis depends on estradiol, cAMP, PKA, or PKC. To achieve these objectives, we tested the effects of FSH, a sphingosine kinase-1 inhibitor (SKI-178), estradiol and inhibitors of aromatase, cAMP, PKA, and PKC (Formestane, MDL-12330A, H-89 dihydrochloride hydrate and Calphostin C respectively), on granulosa cell viability, S1P and estradiol production, and the mRNA expression of CYP19A1 and STAR in four in vitro culture experiments. The addition of FSH (1 ng/mL) increased (P < 0.05) granulosa cells number and S1P concentration in the culture media. Conversely, the addition of SKI-178 (10 μM) reduced (P < 0.05) S1P concentration negating the effect of FSH on cell viability. Inhibition of PKC and PKA, but not cAMP, reduced (P < 0.05) S1P secretion of FSH treated granulosa cells. It is important to note that the reduction in S1P secretion was strong (49 %) with the use of the PKC inhibitor. The use of formestane (10 μg) did not modify (P > 0.05) S1P secretion in FSH-treated cells; however, the addition of 5 or 10 ng/mL of estradiol increased (P < 0.05) S1P secretion. Finally, FSH increased (P < 0.05) estradiol concentration in the culture media, but this effect was not blocked by the inhibition of S1P synthesis. Similarly, FSH, SKI-178 or their combination did not modify the mRNA expression of CYP19A1 and STAR. In conclusion, S1P synthesis is stimulated FSH in granulosa cells and mediated mainly by PKC. S1P in turn promotes the granulosa cell viability, however, this does not influence estradiol synthesis. Additionally, estradiol synthesis induced by FSH is not essential for S1P synthesis, however high estradiol concentration may stimulate S1P production by granulosa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call