Abstract

Glycosphingolipids in filamentous fungi are significant components of the plasma membrane and are vital for different cellular processes, such as growth, morphological transition or signal transduction. Fungal growth inhibitors targeting glycosylinositolphosphoceramide (GIPCs) biosynthesis or antifungal compounds binding to GIPCs present in membranes could present a safe way of preventing fungal growth on crops since GIPCs are not present in mammalian cells. Mass spectrometry-based shotgun lipidomics was used to analyze sphingolipids of 11 fungal strains isolated from plant material. Molecular species with inositol ceramides containing zero to five carbohydrates were identified. Differences in the amount of individual molecular species were influenced by the taxonomic affiliation. All tested strains exhibited a relatively high content (more than 40 mol.%) of GIPCs with three and more saccharides attached to the polar head. It could be assumed that the sphingolipid profiles of the tested plant pathogens would be an adaptation mechanism to antifungal plant defensins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.