Abstract

Neuro-inflammation accompanies numerous neurological disorders and conditions where it can be associated with a progressive neurodegenerative pathology. In a similar manner, alterations in sphingolipid metabolism often accompany or are causative features in degenerative neurological conditions. These include dementias, motor disorders, autoimmune conditions, inherited metabolic disorders, viral infection, traumatic brain and spinal cord injury, psychiatric conditions, and more. Sphingolipids are major regulators of cellular fate and function in addition to being important structural components of membranes. Their metabolism and signaling pathways can also be regulated by inflammatory mediators. Therefore, as certain sphingolipids exert distinct and opposing cellular roles, alterations in their metabolism can have major consequences. Recently, regulation of bioactive sphingolipids by neuro-inflammatory mediators has been shown to activate a neuronal NADPH oxidase 2 (NOX2) that can provoke damaging oxidation. Therefore, the sphingolipid-regulated neuronal NOX2 serves as a mechanistic link between neuro-inflammation and neurodegeneration. Moreover, therapeutics directed at sphingolipid metabolism or the sphingolipid-regulated NOX2 have the potential to alleviate neurodegeneration arising out of neuro-inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.