Abstract

Asthma is the most prevalent chronic respiratory disease worldwide and the leading serious chronic illness in children. Clinical characteristics are wheezing, reversible airway obstruction, airway inflammation, and airway hyperreactivity. Asthma susceptibility is influenced by genes and environment. 17q12-21 is the most significant genetic asthma susceptibility locus and single nucleotide polymorphisms (SNPs) within that high-risk locus are linked to increased expression of the Ormdl sphingolipid biosynthesis regulator (ORMDL) 3. ORMDL3 is an endoplasmic reticulum protein that stabilizesthe serine palmitoyl transferase (SPT) complex that regulates sphingolipid de novo synthesis. Sphingolipids essential for formation and integrity of cellular membranes and bioactive molecules that regulate key cellular processes can be synthesized de novo and through recycling pathways. Their metabolism is tightly regulated through feedback regulation. ORMDL3 inhibits de novo synthesis when it engages subunit 1 of the SPT complex. This chapter focuses on the effect of decreased sphingolipid synthesis on asthma features and summarizes studies in mouse models and in children with and without asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call