Abstract

Fibrous-radiating carbonate spherulites spatially associated with poorly crystalline Mg-Si substances have formed within conical microbialites in modern hypersaline lakes on Rottnest Island, Western Australia. Two spherulitic fabrics can be distinguished based on compositional and textural differences. The oldest (lowermost) fabric comprises variably intergrown aragonitic spherulites 100-500μm wide, containing micritic nuclei with coccoid cell molds in various stages of cell division. Spherulite matrices contain aggregates of individual nanospheres 150-200nm wide, composed of a poorly crystalline Mg-Si phase, locally containing cell molds with similar dimensions to those within spherulite nuclei. The younger (upper) fabric comprises sub-polyhedral networks of mineralized EPS composed of an Mg-Si substance. The polyhedrons contain aragonite-replaced coccoid cells, voids, and polyhedral spherulites 8-12μm wide with a morphology determined by fossil EPS, interpreted to have been produced by coccoid cyanobacteria. These spherulites are composed of high-Mg calcite, inferred to have formed in association with heterotrophic bacteria. Stable isotope data, textural relationships, and geochemical modeling are consistent with cyanobacterial oxygenic photosynthesis influencing the precipitation of Mg-Si substances and aragonitic spherulites by locally increasing the pH. The morphology of the polyhedral spherulites suggests the former presence of EPS and that faceted spherulites with similar dimensions in the geological record may represent biosignatures. The Rottnest Island conical microbialites demonstrate an intimate association between microbial features and processes and spherulitic fabrics, potentially providing insights into texturally and compositionally similar features in the geological record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.