Abstract

Primary human fetal hepatocytes proliferated in monolayer culture up to the 9th passage. During proliferation, the cells changed their morphology from a fibroblast-like shape after inoculation to an epithelia-like polygonal shape after they reached confluence. The proliferation was associated with the loss of ammonia detoxification capacity, which is essential for the function of bioartificial liver. The cells formed spheroids on a poly-glutamic acid- or poly-aspartic acid-coated polystyrene dish that had a negatively charged surface at neutral pH. However, the cells did not form spheroids on a poly-lysine- or poly-arginine-coated dish that had a positively charged surface, which is reportedly suitable to form spheroids for adult hepatocytes. The activity of cytochrome P450 (CYP 1A1, CYP1A2) of the cells in spheroid culture was about twice as high as that of the cells in monolayer culture. The ammonia detoxification activity of the cells was restored in spheroid culture by treatment with 2% dimethylsulfoxide. These results suggest that the conditions for human fetal hepatocytes to form spheroids are different from that for adult hepatocytes, and the use of poly-glutamic acid or poly-aspartic acid coating may improve spheroid culture of proliferative human fetal hepatocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call