Abstract
In this brief paper, a novel set of correlations for the drag, lift and torque coefficients for non-spherical particles of irregular shape is proposed. Such correlations are developed for a sphericity range between 0.7 and 0.95 and for intermediate Reynolds numbers in the range 1,200, common in industrial and environmental processes. The proposed expressions are derived by fitting the results obtained by means of Particle-Resolved Direct Numerical Simulations (PR-DNS) for a uniform flow around different sets of irregular particles and considering a large number of random orientations. The resulting flow resistance coefficients can be approximated by normal distributions whose first and second order statistical moments (i.e., mean and standard deviation) are described in this work by fitting functions depending of particle Reynolds number and sphericity. The derived correlations are simple, can be easily implemented and allow the tracking of irregular particles in a Lagrangian stochastic framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.