Abstract

The general second-order gravity theory, whose Lagrangian includes higher powers of the curvature, is considered in arbitrary dimensions. It is shown that spherically symmetric solutions are static, except in certain, special, unphysical cases. Spherically symmetric solutions are found and classified. Each theory's solutions fall into a number of distinct branches, which may represent finite space with two singular boundaries, or an asymptotically either flat or (anti--)de Sitter space with one singular boundary. A theory may contain at most one branch of solutions in which all singularities are hidden by event horizons. Such horizons generally emit Hawking radiation, though in certain cases the horizon may have zero temperature. Black holes do not necessarily radiate away all their mass: they may terminate in a zero-temperature black hole, a naked singularity, or a hot black hole in equilibrium with a ''cosmological'' event horizon. The thermodynamics of black-hole solutions is discussed; entropy is found to be an increasing function of horizon area, and the first law is shown to hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.