Abstract

We study spherically symmetric solutions in a four-parameter Einstein-Cartan-type class of theories. These theories include torsion, as well as the metric, as dynamical fields, and contain only two physical excitations (around flat spacetime): a massless spin-2 excitation and a massive spin-2 one (of mass $ m_2 \equiv \kappa$). They offer a geometric framework (which we propose to call "torsion bigravity") for a modification of Einstein's theory that has the same spectrum as bimetric gravity models. We find that the spherically symmetric solutions of torsion bigravity theories exhibit several remarkable features: (i) they have the same number of degrees of freedom as their analogs in ghost-free bimetric gravity theories ( i.e. one less than in ghost-full bimetric gravity theories); (ii) in the limit of small mass for the spin-2 field ($ \kappa \to 0$), no inverse powers of $\kappa$ arise at the first two orders of perturbation theory (contrary to what happens in bimetric gravity where $1/\kappa^2$ factors arise at linear order, and $1/\kappa^4$ ones at quadratic order). We numerically construct a high-compactness (asymptotically flat) star model in torsion bigravity and show that its geometrical and physical properties are significantly different from those of a general relativistic star having the same observable Keplerian mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.