Abstract

Extensions of Einstein gravity with quadratic curvature terms in the action arise in most effective theories of quantized gravity, including string theory. This article explores the set of static, spherically symmetric and asymptotically flat solutions of this class of theories. An important element in the analysis is the careful treatment of a Lichnerowicz-type ``no-hair'' theorem. From a Frobenius analysis of the asymptotic small-radius behavior, the solution space is found to split into three asymptotic families, one of which contains the classic Schwarzschild solution. These three families are carefully analyzed to determine the corresponding numbers of free parameters in each. One solution family is capable of arising from coupling to a distributional shell of matter near the origin; this family can then match onto an asymptotically flat solution at spatial infinity without encountering a horizon. Another family, with horizons, contains the Schwarzschild solution but includes also non-Schwarzschild black holes. The third family of solutions obtained from the Frobenius analysis is nonsingular and corresponds to ``vacuum'' solutions. In addition to the three families identified from near-origin behavior, there are solutions that may be identified as ``wormholes,'' which can match symmetrically onto another sheet of spacetime at finite radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.