Abstract
We prove the existence of global weak solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients when the initial data are large and spherically symmetric by constructing suitable aproximate solutions. We focus on the case where those coefficients vanish on vacuum. The solutions are obtained as limits of solutions in annular regions between two balls, and the equations hold in the sense of distribution in the entire space-time domain. In particular, we prove the existence of spherically symmetric solutions to the Saint–Venant model for shallow water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.