Abstract

We enumerate all possible types of spacetime causal structures that can appear in static, spherically symmetric configurations of a self-gravitating, real, nonlinear, minimally coupled scalar field \phi in general relativity, with an arbitrary potential V(\phi), not necessarily positive-definite. It is shown that a variable scalar field adds nothing to the list of possible structures with a constant \phi field, namely, Minkowski (or AdS), Schwarzschild, de Sitter and Schwarzschild - de Sitter. It follows, in particular, that, whatever is V(\phi), this theory does not admit regular black holes with flat or AdS asymptotics. It is concluded that the only possible globally regular, asymptotically flat solutions are solitons with a regular center, without horizons and with at least partly negative potentials V(\phi). Extension of the results to more general field models is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.