Abstract

The problem of classical singularities is revised on the basis of the quantum-gravity effective equations. We find a simple rule for establishing the Birkhoff theorem in spherically symmetric problems. All exact solutions of the lagrangian with C 2 αβγσ are obtained. Spherically symmetric collapse of the thin null shell of mass M is considered in the framework of a local theory describing vacuum polarization effects. The boundary-value problem is set and the asymptotic solution is obtained. It is found that the shell collapses to r = 0 without the rise of a singularity, and begins expanding. The global behaviour of the solution is obtained for small M. For large M it is conjectured that the event horizon does not form, and the apparent horizon is closed. An object forms, possessing the observable properties of a black hole, but living a finite time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.