Abstract
We present a self-consistent, bimodal stationary solution for spherically symmetric flows driven by young massive stellar clusters with a central supermassive black hole. We demonstrate that the hydrodynamic regime of the flow depends on the location of the cluster in the 3D (star cluster mechanical luminosity - BH mass - star cluster radius) parameter space. We show that a threshold mechanical luminosity (L_crit) separates clusters which evolve in the BH dominated regime frome those whose internal structure is strongly affected by the radiative cooling. In the first case(below the threshold energy) gravity of the BH separates the flow into two distinct zones: the inner accretion zone and the outer zone where the star cluster wind is formed. In the second case (above the critical luminosity), catastrophic cooling sets in inside the cluster. In this case the injected plasma becomes thermally unstable that inhibits a complete stationary solution. We compared the calculated accretion rates and the BH luminosities with those predicted by the classic Bondi accretion theory and found that Bondi's theory is in good agreement with our results in the case of low mass clusters. However, it substantially underestimates the accretion rates and BH luminosities if the star cluster mechanical luminosity, L_sc, approaches the threshold value (L_sc > 0.1 L_crit).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.