Abstract

AbstractVenus boasts an abundance of volcanoes and volcano‐like structures. Synthetic aperture radar images of the surface have revealed extensive evidence of volcanism, including lava flows and edifices. Volcanic activity is further supported by crater statistics, and analysis of topography and gravity data. Unique to Venus, coronae are quasi‐circular volcano‐tectonic features exhibiting diverse volcanic characteristics. Despite this, volcanism is often under‐represented in formation models. We identify a new subset of coronae that display topographic changes subsequent to the emplacement of lava flows within their fracture annuli, pointing to the critical role of volcanic and magmatic processes in the formation of these coronae. Through spherical‐harmonic distribution analysis, we find that this new subset is spatially related to the full coronae database, pointing to an intrinsic process of coronae formation. Furthermore, coronae exhibit strong correlations and similar spectral shapes at low spherical harmonic degrees with large volcanoes, suggesting a shared geodynamic origin. Our findings underscore the pivotal role of volcanism in coronae formation and highlight the need for future research to integrate magmatic and volcanic processes more comprehensively into geophysical models. Such models would better capture the complex interactions between volcanic emplacement, magmatic activity, and lithospheric dynamics on Venus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call