Abstract

The choice of local HARDI reconstruction technique is crucial for discerning multiple fiber orientations, which is itself of substantial importance for tractography, and reliable and accurate assessment of white matter fiber geometry. Due to the complexity of the diffusion process and its milieu, distinct diffusion compartments can have different frequency signatures, making the HARDI signal spread over multiple frequency bands. Therefore, we put forth the idea of multiscale analysis with localized basis functions, ensuring that different frequency ranges are probed. With the aim of truthful recovery of fiber orientations, we reconstruct the orientation distribution function (ODF), by incorporating a spherical wavelet transform (SWT) into the Funk-Radon transform. First, we apply and validate our proposed SWT method on real physical phantoms emulating fiber bundle crossings. Then, we apply the SWT method to a real brain data set. The analysis of the real data set suggests that different angular frequencies may capture different information, thus stressing the importance of multiscale analysis. For both phantom and real data, we compare the SWT reconstruction with state-of-the-art q-ball imaging and spherical deconvolution reconstruction methods. We demonstrate the algorithm efficiency in diffusion ODF denoising and sharpening that is of particular importance for applications to fiber tracking (especially for probabilistic approaches), and brain connectome mapping. Also, the algorithm results in considerable data compression that could prove beneficial in applications to fiber bundle segmentation, and for HARDI based white matter morphometry methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.