Abstract

The description of 3D shapes with features that possess descriptive power and invariant under similarity transformations is one of the most challenging issues in content based 3D model retrieval. Spherical harmonics-based descriptors have been proposed for obtaining rotation invariant representations. However, spherical harmonic analysis is based on latitude-longitude parameterization of a sphere which has singularities at each pole. Consequently, features near the two poles are over represented while features at the equator are under-sampled, and variations of the north pole affects significantly the shape function. In this paper we discuss these issues and propose the usage of spherical wavelet transform as a tool for the analysis of 3D shapes represented by functions on the unit sphere. We introduce three new descriptors extracted from the wavelet coefficients, namely: (1) a subset of the spherical wavelet coefficients, (2) the L1 and, (3) the L2 energies of the spherical wavelet sub-bands. The advantage of this tool is three fold; First, it takes into account feature localization and local orientations. Second, the energies of the wavelet transform are rotation invariant. Third, shape features are uniformly represented which makes the descriptors more efficient. Spherical wavelet descriptors are natural extension of 3D Zernike moments and spherical harmonics. We evaluate, on the Princeton Shape Benchmark, the proposed descriptors regarding computational aspects and shape retrieval performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.