Abstract
A simple, flexible, accurate, and comprehensive numerical method is presented for theoretically analyzing the diffraction field of a continuous wave transducer of arbitrary size, shape, and frequency. Using the extensively studied circular transducer for comparison, numerical results are shown for an unfocused transducer with uniform velocity excitation as well as for a focused transducer with Gaussian velocity excitation. Data concerning the execution time, program size, and convergence of the method are also presented for its implementation as a design tool on a minicomputer system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.