Abstract

Steering the electronic structure of a catalyst has been considered as an effective way to boost the electrocatalytic activity of hydrogen evolution reaction (HER). Herein, a core-shell architecture comprising a Ru nanoparticle (NP) encapsulated into an oxyfullerene-like carbon cage decorated with single-atomic RuNx species anchored on nitrogen-doped carbon substrate (RuNP@RuNx-OFC/NC) was constructed. Benefiting from the efficient electronic communication between Ru NP and atomically-distributed Ru site on the carbon cage, the RuNP@RuNx-OFC/NC exhibited outstanding electrocatalytic performance for HER both in acid and alkaline. Experimental and theoretical results demonstrated that the charge transfer from Ru NP to single-atomic Ru could steer the electronic density of Ru sites and thus facilitate the adsorption of hydrogen and dissociation of water. Resultantly, such charge electronic communication effectively reduced the Gibbs free energy, leading to the improved HER activity. The present work would promote the design and construction of efficient electrocatalysts for energy conversion and storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call