Abstract

The atomization energies of molecules from first-principles density functional approximations improve from the local spin-density approximation to the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) to the strongly constrained and appropriately normed (SCAN) meta-GGA, and their sensitivities to non-spherical components of the density increase in the same order. Thus, these functional advances increase density sensitivity and imitate the exact constrained search over correlated wavefunctions better than that over ensembles. The diatomic molecules studied here, singlet C2 and F2 plus triplet B2 and O2, have cylindrically symmetric densities. Because the densities of the corresponding atoms are non-spherical, the approximate Kohn-Sham potentials for the atoms have a lower symmetry than that of the external (nuclear) potential so that the non-interacting wavefunctions are not eigenstates of the square of total orbital angular momentum, breaking a symmetry that yields a feature of the exact ground-state density. That spatial symmetry can be preserved by a non-self-consistent approach in which a self-consistent equilibrium-ensemble calculation is followed by integer re-occupation of the Kohn-Sham orbitals as the first of several steps. The symmetry-preserving approach is different from symmetry restoration based on projection. First-step space- (and space-spin-) symmetry preservation in atoms is shown to have a small effect on the atomization energies of molecules, quantifying earlier observations by Fertig and Kohn. Thus, the standard Kohn-Sham way of calculating atomization energies, with self-consistent symmetry breaking to minimize the energy, is justified at least for the common cases where the molecules cannot break symmetry. Unless symmetry breaking is allowed in the molecule, SCAN strongly underestimates the atomization energy of strongly correlated singlet C2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call